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We present a relaxation algorithm for obtaining the classical and non- 
classical paths from the boundary value problem with fixed initial and 
final positions and times on the path, and we discuss a technique for 
obtaining all paths connecting a given set of end points. From these 
paths, the action and other essential quantities entering the far-from- 
caustic and near-caustic expressions for the semiclassical propagator 
can be obtained. We illustrate with three one-dimensional examples 
-a time-dependent harmonic oscillator, a double-well anharmonic 
oscillator, and the repulsive l/x* potential-and find good agreement 
between the numerically calculated and exact paths where analytical 
results are available for comparison. We also find surprisingly good 
agreement between the semi-classical propagator and the exact 
propagator in cases where the latter is available for comparison. 
IC 1992 Academic Press. Inc 

1. INTRODUCTION 

The Feynman path integral representation of the 
propagator is useful for a quantum mechanical formulation 
of many problems in equilibrium and nonequilibrium 
statistical mechanics [l-3]. For equilibrium problems [4], 
the density matrix is the propagator evaluated at purely 
imaginary times, and numerically the problem is viable 
because the discretized path integral involves integrations 
over a positive integrand. For nonequilibrium problems, 
however, involving time correlation functions of the type 
(A(O) B(t)), the propagator is required at real and com- 
plex times [S], and the integrand in the discretized path 
integral contains a strongly oscillatory piece. Numerically, a 
brute force calculation leads to massive phase cancellations 
and is not viable. Unfortunately, to date, this problem has 
not yet been solved in a satisfactory manner for all cases, 

although recently some promising stationary phase Monte 
Carlo methods have been proposed [6-81 and tested on 
some special cases. 

An approximate approach which avoids the phase 
cancellation problem is the semiclassical or WKB approxi- 
mation [2, 91. There are many physical systems where 
quantum effects are small and a WKB approximation for 
the propagator is justified. Since in WKB the integration 
over the rapidly oscillating integrand is done analytically by 
a stationary phase approximation, numerically the massive 
phase cancellations do not arise. There has been much 
analytic work in the theory of WKB propagators [2,9], but 
apart from Ref. [lo], which deals with semiclassical path 
integrals in the coherent state representation, and Ref. [ 111, 
which we discuss below, little work has been done in 
devising discretized algorithms for calculating the quantities 
that enter the expression for the WKB propagator. This is 
true of the usual far-from-caustic expression as well as of 
the near-caustic expression. A caustic is a surface in path- 
parameter space (i.e., the space of end point variables x0, t,, 
x,, t,-see next paragraph) which separates the space into 
regions where there are typically two allowed classical paths 
connecting the end points on the classically allowed side of 
the caustic and two nonclassical paths on the other side. On 
the caustic itself, there is typically just one allowed classical 
path corresponding to each set of end point variables. 

The key quantity required for the WKB propagator is the 
classical action as a function of end point variables on a 
path, (x,, toI and (x,, t,), i.e., 

S,(x,, 10; x,7 t,) = j’““““’ Ux,(f)) dt, (1) 
~xo.~o) 
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where x,(t) is the classical path expressed as a function of 
end points as well as time t, 

xc(t) = x,(t; x0, to, x,> t,L (2) 

and L is the Lagrangian which is a function of the path. We 
assume it to have the form, 

L(x(t)) = +mi2 - V(x, t), (3) 

where i= dxldt and m is the mass of the particle, which 
moves in a time and space dependent potential [12], 
I/(x, t). In general, however, S, is a nontrivial quantity to 
calculate, even numerically. The problem lies in obtaining 
the path as a function of end points, as in (2). One obvious 
method is to obtain the classical path by integrating the 
Euler-Lagrange equation, or equivalently Newton’s equa- 
tion, as an initial value problem and obtain, for instance, 

xc(t) = xc(t; x0, 00, to), (4) 

where v. is the initial velocity on the path. Then, by 
adjusting uO, the classical path can be made to pass through 
the end points, (x0, to) and (x,, t,). This shooting method 
requires a substantial amount of work and can become 
numerically horrible in situations where the path is very 
sensitive to changes in uo, as one can imagine for various 
potentials. The problem is further compounded in higher 
dimensions, where many parameters in (4) will need adjust- 
ment, or in obtaining paths in the classically unallowed 
region where u. will have to be made complex. One would 
like to avoid these numerical problems, especially in practi- 
cal applications [S], where the propagator is to be 
integrated with respect to its end points. Then many paths 
will have to be generated in this manner. 

The main purpose of this paper is to introduce a numeri- 
cally more viable method for obtaining (2), and the other 
quantities such as S,, required in the WKB expressions for 
the propagator, for both far-from-caustic and near-caustic 
conditions. Our method is based on obtaining the classical 
path from a boundary value problem, rather than from an 
initial value one; the problem is to find the path (or paths), 
given the two end points and the time taken to reach the 
final point. This is done by a relaxation method, similar to 
relaxation methods for calculating electrostatic potentials, 
or to Lanczos methods for the ground state in quantum 
problems [ 13 1. 

The boundary value problem outlined in the above 
paragraph has been considered by Doll et al. [ 111, by a 
completely different method. In their method they consider 
the decomposition of a path into its Fourier modes and 
proceed to obtain the Fourier coefficients of the path by 
simulated annealing, a stochastic Monte Carlo process. 
However, by retaining our paths in real space representa- 

tion, the discretized action functional in matrix language 
can effectively be written in tridiagonal form (consider d2sjk 
in Section 3) and rapidly extremized by a deterministic 
procedure, which is not possible for the Fourier representa- 
tion, where the corresponding matrix is, in general, not 
tridiagonal. Our formulation of the discretized action 
functional in real space, which leads to the tridiagonal 
form, is optimal for obtaining the paths, since (1) reducing 
the discretized action functional to diagonal form is only 
possible if the problem is already solved, (2) although 
5, 7, . ..-diagonal matrices could also be formed in real space 
representation (the nondiagonal piece arises from the 
kinetic energy term), the tridiagonal form is the simplest 
which can be implemented. A representation in an other 
basis (e.g., in Fourier modes) will not generate a tridiagonal 
form in general. Besides greater speed, our method also has 
the advantage of systematically finding all allowed paths 
connecting the two end points in a given time. Further, Doll 
et al. [ 1 l] do not discuss the following topics, which are dis- 
cussed in this paper: near-caustic conditions, nonclassical 
paths, and the Van Vleck prefactor for the semiclassical 
propagator. 

We organize the paper as follows. In Section 2 we intro- 
duce the discretized propagator for Lagrangians of the form 
(3) obtain the discretized WKB expressions for the far- 
from-caustic and near-caustic conditions, and we identify 
the essential ingredients which are needed in these, i.e., the 
paths, actions, and Van Vleck prefactors. In Section 3 we 
formally present our method for obtaining numerically 
those quantities needed in Section 2; in particular, we show 
how to determine.all the paths connecting two end points in 
a given time. In Section 4 we implement our method for 
three examples: (a) a time-dependent harmonic potential, 
(b) a time-independent double-well anharmonic potential, 
and (c) the 1/x2 potential. 

For the time-independent anharmonic potential, we com- 
pare our method with both shooting and annealing. In 
every case, we find our method to be advantageous over the 
two others, as regards both (a) cpu time required and (b) 
the ability of the method to find all paths connecting the two 
end points in a given time. Throughout this work we restrict 
ourselves to one dimension for simplicity in illustrating 
the method. Extension to more than one dimension is 
straightforward and, although no results are presented here, 
some test cases were done successfully and will be described 
in future work. 

2. DISCRETIZED WKB PROPAGATORS 
FOR FAR-FROM-CAUSTIC AND 
NEAR-CAUSTIC CONDITIONS 

In this section we derive the discretized expressions for 
the WKB propagator. The continuum forms are derived by 
Schulman [ 21. 
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The time evolution operator U( t,, to) for the (in general, 
time-dependent) Hamiltonian 

H(t) = $72 + V(x, t), (5) 

with p = rni-, corresponding to the (in general, time-depen- 
dent) Lagrangian (3) can be written [ 141 as a product of 
short-time evolution operators over the interval t, - to: 
U(t,, to) = U(t,, t, -At) ... U(t, + At, to), where the short- 
time evolution operator is given in Ref. [ 141, U(t + At, t) GZ 
1 - iH( t) At/h z exp( - iH( t) At/h), where we neglect 
0(At*) terms. Inserting (n- 1) intermediate states we 
obtain for the propagator, K, 

mo, to; x,, t,) = <x, I utn, toI x0> 
z dx 

s 1 . ..dx.p, 

x (x, le-‘Hn-ldt’hJ x,- 1) 

. . . (q Ie--iHodflhl x0), (6) 

where to, t,, and At = (t, - to)/n are, in general, complex 
and H,= H(to + j At). Equation (6) becomes exact in the 
limit n -+ co, but for discretized numerical work we keep n 
large and finite. For IAtl sufficiently small, the Trotter 
approximation gives [ 21 

m(xj-xjpl)’ iAt 
2% At -z(II,+ vj-l) 3 C7) 1 

where 1” = (27cifi At/m)‘l’ is a quantity with dimension of 
length, and Vi = V(xj, to + j At). 

For convenience, we introduce the free-particle reference 
path passing through the same end points, (x,, to) and 
(x,, t,). In discretized form, this path, X( t,) = X,, is given by 

xj= [(n-j)x,+jx,]/n, j = 0, . . . . n, (8) 

and we now make the variable transformation, yj = xi - 2,. 
We then find that (6) becomes 

K(xo, to; x,, t,) = exp 
i m(x, - xo)2 
- 

L( h 2(tn- to) 

-$?v,+ v.gt(o, to;& t,), (9) 

where the reduced propagator i? for propagating from 
y, = 0 to y, = 0 is given by 

&O, t,;O, t,,)=$Jdy, ...dYn- 1 exp [i SC{Yj})]. (10) 

and the reduced action 3 as a function of the discretized 
path is 

= -&ttjkyjyr-Atn&? V,. 
j= 1 

(lib) 

The notation { yi} is short for the whole set y,, . . . . y,-, . In 
(lla), y,= y, =0 is understood and V,= V(yj+Xj, 
to +j At) is the potential, shifted in the yj coordinate by Xi. 
In (1 lb), the (n - 1) x (n - 1)-dimensional matrix tjk is 
tridiagonal, with t,] = -2 and t,, jf, = 1. The summation on 
repeated indices runs over j = 1, . . . . n - 1. 

The error in the Trotter short-time propagator (7) is 
O(At); despite this, the full propagator (9) becomes exact in 
the limit At+O, n-co, with nAt=t,-to (Makri and 
Miller [ 93 ). 

a. Far-from-Caustic Condition 

For a stationary phase approximation to (lo), we require 
those yj for which (11) is stationary, i.e., classical paths in 
classically allowed regions, and nonclassical paths otherwise. 
The numerical prescription for getting these will be the sub- 
ject of Section 3. There may be several such well-separated 
paths connecting the given end points, in which case (10) 
will have a contribution from each. Consider one such path, 
JJ,~. Then (11) can be expanded about it, 

$1 y; + S,}) = 3, + ;623,c,bjdk + O(S)), (12) 

where 3, and 8’$$ = a2s/ilayj8yk are evaluated at y, = y,?. 
The linear term, involving Ss,? = @/lay,, evaluated at 
y,= y,?, vanishes because of the stationary condition. The 
matrix d’s,‘; can be obtained by differentiating (1 lb), 

a2s!-= -2,. -At V!‘ca. tk At Ik I Ik ’ (13) 

where V”=a2V/ax2 and V,YC= V”(y.,?+X,, t,+jAt). No 
sum overj is implied in the last term VJ”c6jk, and 8jk iS the 
Kronecker delta. For purely real (or purely imaginary) At, 
““3: is a nonsingular real symmetric matrix (times i for At 
pure imaginary) and is diagonalizable by an orthogonal 
matrix, call it ujk. For general complex At, however, 
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S’s,: is a nonsingular complex symmetric matrix (not 
Hermitian), but still diagonalizable. 

The integrals in (10) can now be evaluated in the h + 0 
limit by truncating (12) at the quadratic term [2], trans- 
forming from yj to aj, and then to 5, with hi= UjkSk. The 
final result upon evaluating (10) and substituting into (9) is 

K(x 0, t,; x,1, t,) 

=; (&J2 
i m(x, -x0)2 At 

xexp ii 2(&-t,) [( -+1/o+ V,)+S,. >I , 

(14) 

where & denotes a sum over all the stationary values of 3 
except those discussed below, and 

A,= At( -At/m)“--’ det(d*Sg), (15a) 

In (14), the essential ingredients are 3, and A,, which can 
be calculated easily using (11) and (15), respectively, once 
the y: are known. Both quantities are independent of n in 
the limit n --) co. Expression (14) is a central result; it is the 
WKB form for the propagator for the far-from-caustic 
regions. 

The sum over C contains all classical paths connecting 
(x,, , to) to (x,, t,) in the classically allowed regions and only 
those nonclassical paths which do not lead to an exponen- 
tially growing term in (14) as one varies the end points into 
the classically unallowed regions. As will be illustrated in 
Section 4, a classically unallowed region occurs beyond a 
caustic, and two nonclassical paths exist in this region, 
which have complex yj despite the fact that the end points 
are real. The paths are related to each other by complex 
conjugation and, similarly, so are their corresponding com- 
plex actions, S,, and also (see next paragraph) their com- 
plex A.‘s. One path leads to an exponentially growing term 
and must be discarded. This term arises because of the 
asymptotic nature of the theory; terms in (14), when 
analytically continued to the classically unallowed region by 
varying t,, say, may not be admissable due to Stokes lines 
in the complex t,, plane. A heuristic explanation of this will 
be given in Section 4. 

The phase of A, I’* is to be taken as follows: On the classi- 
cally allowed side of the caustic, the phase can be made 
explicit by writing A? = (Ac1”2 exp(iv,n/2), where vc is 
the number of negative eigenvalues of “‘3,: in the definition 
(15) of A,. It has been shown (Pechukas [9], Levit and 
Smilanski [9]) that vc is equal to the number of times the 

path C touches a caustic between its end points. (We are 
using here the geometric picture of a caustic as an envelope 
of a family of classical paths-see example (c) in Section 4.) 
The fact that A, picks up a phase factor e’“, after the 
allowed path C touches a caustic, can be made plausible by 
noting that an eigenvalue of 6’&!?,:, i, say, becomes zero 
when C ends on a caustic and changes sign after the end 
point of C moves away from the caustic after having 
touched it. Since A, is proportional to the product of all the 
eigenvalues, the result follows. As the classical path is 
analytically continued past the caustic to the classically 
unallowed side by varying an end point, A,- becomes purely 
imaginary, since (typically) one of the eigenvalues of d2s,:, 
I, say, becomes purely imaginary, and the remaining 
eigenvalues are purely real; hence, A:* picks up a phase 
factor ernj4, i.e., 1, -+ ein/*i,, so that I iI2 -+ einf412 :I2 and 
Ay*+e rn’4A:!2. The AC’s for the two nonclassical paths that 
emerge from a caustic on the classically unallowed side are 
related by complex conjugation, because these are the 
analytic continuations of the AC’s for the classical paths 
coalescing at the caustic, and the latter A.% differ by a 
minus sign. This same choice of phase for A y also enters the 
uniform asymptotic form where both nonclassical paths 
contribute (see Section 4). 

b. Near-Caustic Condition 

When the A, becomes small for some classical path, the 
prefactor of (14) for that path blows up and we have the 
condition where the classical path is close to a caustic, i.e., 
the locus of points in the space of x0, to, x,, t, such that two 
or more paths connecting (x,, to) to (x,, t,) are coalescing. 
The WKB expression given in (14) is then a poor 
approximation to the actual propagator, so that we must 
derive a new approximation for the caustic region. An 
asymptotic matching of the WKB propagators in the classi- 
cally allowed region, caustic region, and unallowed region 
will be required [ 151. Alternatively, a uniform asymptotic 
approximation can be employed; this approximation is 
valid uniformly (i.e., equally for all regions), and, in par- 
ticular, it interpolates between the far-from-caustic and 
near-caustic regions. We do not derive this form here (see 
[2, 18, 19]), but in Section 4 we present results for the 
uniform approximation for the l/x2 potential. 

Let y, be a particular classical path which is near some 
caustic classical path y,F. We consider the case where x0, t,, 
x, are the same for both paths C and F, but tf;’ is the final 
time for F, and tz that for C, with difference t = t,“ - tf. We 
assume the usual case that the caustic occurs in purely real 
time so that t,, t:, and y,’ are all real; however, t,’ may be 
complex but near tf;. We also define the spatial difference 
between the two paths at each time slice, uj = y,? - y,?; the 
two paths have the same total number of time slices, so that 
q, is defined for each j. 
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First, the action along an arbitrary path y/- connecting t, 
and t,’ = t,” + r is expanded about t,‘. We need not expand 
explicitly, but by using (11 b), we can show directly that 

s({Yj}; tO, t,“+7)-s({Yj}; tO, t:) 

= -X-qYJ; to, t,“, 7), 

where x = r/( tR - to) and 

(16) 

+ 
( > 

+ "Cl [At V(t,+jAt) 
j= I 

- At, J’(to + j AfF)l, (174 

where V(to+jAt)= V(yj+Xj, to+jAt), At=At,+z/n, 
and At, = (t: - to)/n. For V independent of t this reduces to 

E({yj};i,,t~,r)=-~I,yjy,+At,^~’ Vj. (17b) 
j=l 

TO lowest order in 7, (17a) and (17b) are the integrals of the 
Hamiltonian with respect to time along a path yj. Next, the 
action along the arbitrary path is expanded about y,? as 
follows: 

sC{Y/F+Ej}; tO, t,“)=s({y~+Ei}; tO, tf) 

+ [S({Y,‘+&j}; t(), t,“+T) 

-3((Y,“+Ej); tO, tF)l 
= s({ Y,“+ &j}; tO, fr) 

-XE({yf’+Ej}; to, t,“, 7). (18) 

Then we have 

S( { y,“+ Ej}; to, t;, = s,+ $S23;J,&,Ek 

+ $333;,&,Ek&, + O(E4), (19) 

where s,, Li2sfk, and c?~,!$., are defined similarly to 3, and 
13~3; above, but evaluated along the caustic path F. The 
linear term vanishes because, for times to and t,F, y,! is the 
classical path, which renders 3 stationary. In a similar 
manner, we obtain 

E({ylf’+&,}; to, tf, T)=E,+~E,FE~+~~~EIF~E~E~ 

i- ~63E&Ej&k&I + o(E4), (20) 

and the derivatives of E can be obtained from (17a) or (17b) 
in the same way as those for 3 and are evaluated along the 
caustic path y,!. 

Since we have assumed that the caustic occurs in pure real 
time, C5”s,c is real symmetric and is diagonalized by an 
orthogonal matrix, Ujk. The caustic condition implies that 
det(d2$) =O, so that at least one eigenvalue of 6’3; is 
zero. We consider the usual case that one eigenvalue is zero, 
corresponding to j = 1, say, and the others are nonzero. 

We break up ~~ into a contribution from the difference 
between y,? and y,“, namely qj = y,? - yl?, plus the difference 
between the arbitrary path y, and y,‘, namely Sj = yj - y:, 
i.e., ~~ = y~i + 8,. With the further transformation from S, to 
tj, where Sj= U,t,, (18) becomes 

The terms in the four square brackets can be identified with 
3 SsC J2sC and J3$z,, respectively, and expanded 
at&t >‘and ? to 0(q3), O(q*), O(q), and O(l), respec- 
tively. ff terms” to all orders in q are included in the 
expansion of Ss,?, it vanishes; but, in the spirit of the near- 
caustic asymptotic theory, higher order terms in q do not 
contribute in the fi + 0 limit to the integration in (10). To 
identify the contributing terms it is sufficient to do an order 
of magnitude estimation of all the terms. Terms depending 
on cj, i.e., all but the constant term, will contribute only 
if they are O(h) to cancel the fi dividing 3 in (10). For the 
purpose of estimating the order of magnitude of the terms, 
the 3, E, and U matrices can be treated as 0( 1 ), and 3 can 
be roughly thought of as 

n-1 

3-const+ C ([(v+q*)-X(1 +q+q2)] tj 
,=I 

+ Cb$+v)-x(1 +rl)l r:+ Cl -xl r:> 
+ higher terms, (22) 

where Aj = d2sc, U,,. U, are the eigenvalues of S’$. Since rl 
is a measure of the deviation of our classical path from the 
caustic, we can examine 3 for any size ‘I. The near-caustic 
condition occurs when r] = 0(fi2’3) [2], and hence 7 and x 
are 0(fr213). For j= 1, we have 1, = 0, and the leading 
contributions to (10) come from &i, ~5~) and t:, with 
5, = O(fi1’3). Th en all the other t1 terms are of higher power 
in h and have a vanishing contribution as #i + 0. For j # 1, 
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we have Aj = 0( 1 ), and the leading contribution comes from 
LjcT with tj = O(r2”‘); the other <, terms are of higher order. 

Hence, with only the contributing terms explicit, (21) 
becomes 

m=2 

+ noncontributing terms, (23) 

where 

v = (h23,F,qj- $E,F) Ukl = -x~E:&,. (244 

Note that t2yk Uk i is zero for all j, since Uk I is the eigen- 
vector of 6 sjk with zero eigenvalue. Explicitly, for V time- 
independent, we have 

1 
Uk,, Pb) 

and a similar expression for V time-dependent. Also, we 
have 

u=~d3sJ~juj1 uk, u/l, 

= - 4 At, VJ!‘lFU), . (25) 

Substituting into (lo), we find the integrations over 
t,, j # 1, can be done as in the far-from-caustic case; 
the integration over rl yields the Airy function, Ai( The 
result upon integrating is the following contribution to 
Mxo, to; x,, t,): 

m 
ifi2/3(AF p)w 

At 
-~U’o+K)+~, , >I (26) 

where 

A,= (At)2 (-At/m)“-’ det’(s2$), 

= (At)2 (At/At,)“P2 det’ 

z (AtF)’ det’ (27) 

and det’ means the product of all the eigenvalues with the 
zero eigenvalue removed. We set (At)2 (At/AtF)“-2 z 
(AfF)2, since we take the limit fi + 0 with n fixed, and we 
recall At - At,= t/n = 0(ti213). It is important to note that 

this approximation, together with that made in neglecting 
terms in (21), is valid in the strict limit h + 0, and for the 
values of fi and n used in practice, one appears to find large 
corrections to the U, u, and A, terms retained. However, 
because of the asymptotic nature of the theory, including 
such corrections in the exponential gives poorer agreement 
with the exact result. The correction due to these terms can 
be obtained by expanding the exponential containing them 
in a Taylor series and by treating the resulting series after 
integration as an asymptotic one. 

Expression (26) is to replace those terms in (14) for paths 
within 0(!i2”) of a caustic path; however, on both the classi- 
cally allowed and unallowed sides, there are two coalescing 
paths at the caustic, and the actions for the two are equal 
only at the caustic. The action entering (26) can be the 
action for either path; but, to increase the range over which 
(26) is valid, one can take the contribution from each path 
as follows: On the classically allowed side, each classical 
path contributes one-half of (26). To keep the phase relation 
between these two terms correct, one replaces A, by PA,, 
where p is the phase, i.e., + or -, of the eigenvalue of ~3’s~’ 
which vanishes at the caustic. Then the sign of PA, agrees 
with the sign of A,, and the phase of (~4.)“~ in (26) is 
chosen as for A2 (see discussion above). On the classically 
unallowed side, one must take just the one term, (26), 
corresponding to the path whose action does not lead to an 
exponentially growing term in (26). On the classically 
unallowed side, the phase of A? is chosen as described for 
A? in the preceding section. Other paths which may exist 
for the given set of end points, but are not coalescing at the 
caustic under discussion, contribute as in (14). 

Expression (26) is analogous to that of Eq. (15, 16) of 
Schulman [2], but with the following differences: (a) our 
result is for the discretized case, whereas Schulman gives the 
result for the continuous case; (b) we approach the caustic 
by varying t,, whereas Schulman approaches it by varying 
X . as a result our expression (24) for v differs from his; 
(c)’ we give an explicit computable algorithm for the 
square-root prefactor in (26), whereas Schulman leaves the 
prefactor indeterminate with form O/O on the caustic; 
(d) Schulman does not bother to calculate all the factors 
preceding Ai in (26); these factors are needed for our later 
applications. 

The essential ingredients in (26) are SC, A,, v, and U, and 
are easily calculated once yc and yJ! are known. If Uj, is nor- 
malized such that cJ’~i Uf, = 1, then AFw n, v N n-‘j2, and 
u m ne312 as n + co, but (26) is independent of n as n -+ co. 
Since U,, is an eigenvector, it contains an ambiguous over- 
all phase, i.e., + or - ; however, this ambiguity drops out 
of (26). In the argument of the Airy function, both v and u 
are odd in U,, and, since the principal root is to be taken in 
calculating u , ‘I3 the argument is independent of the phase of 
U,, . In the prefactor, u213 = (u~‘~)~ is always positive and 
hence is independent of the phase of U,, ; the principal root 
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in (u2/3)w is taken. The sign of v is also determined by the 
sign of x, which depends on t,’ - tf and therefore changes in 
crossing the caustic. 

3. THE RELAXATION METHOD FOR 
THE CLASSICAL PATHS 

In this section we formally present our relaxation method 
for obtaining the classical path as a function of end points. 
By making the variable transformation from xi to yj, the 
equivalent problem is to obtain the classical path in the yj 
coordinate, where the boundary condition is always 
y,= y, =O, with the same times t,, t, as for xi. The 
difference in the boundary conditions is absorbed into the 
shift in the potential. 

The principle of least action states that (11) is stationary 
for the classical paths, which are therefore solutions to 

ss=6s/_ -$tjkyk-At V/‘&l, 
aYj (28) 

where V’ = i3 V/ax and’&’ = V’( yJ- + Xj, t, + j At). Note that, 
in general, VI! depends on yj nonlinearly, so that (28) is a 
nonlinear algebraic equation for yj. This nonlinearity ren- 
ders (28) nontrivial to solve, but, in compensation, yields 
some interesting physics, i.e., the possibility of more than 
one solution, corresponding to the possibility of more than 
one path connecting the given end points. To solve (28) we 
employ a Newton-Raphson (NR) technique in the (n - l)- 
dimensional space of yj. The NR approximation to the 
vector Ay,, which points from a starting point of arbitrary 
yj to the solution of (28), is 

Ayj = - [S2$J -’ 63, Pa) 

=- (At)2 v.“& -’ tk,y,+02 V,: , (29b) tjk + - 
m ’ ‘k 1 [ m 1 

where VJ! and VJ!’ are evaluated at the current values of yj. 
The numerical procedure, then, is to start at some good 
guess for yJ? and iterate according to y/new = ~7” + Ay,, until 
the method converges to y,?. At first sight the numerical 
effort seems bigger than it actually is, because one has 
to invert an (n - 1) x (n - 1) matrix for each iteration. 
However, this matrix is tridiagonal, with complex diagonal 
terms, in general, and unit near-diagonal terms. Inversion 
and multiplication by the rightmost vector in (29b) can be 
done by Gaussian elimination plus back substitution 
(GEB) and is an order n operation [ 163. A similar scheme 
can be employed to calculate the determinant in (15b) for 
the far-from-caustic expression. With the matrices set 
exactly as displayed in (15b) and (29b), GEB involves only 
differences between numbers of order n, except near a 
caustic. With n set to a reasonable value, n z 100, this poses 

no numerical problem. One can see this point by taking the 
simple case where V = 0. Then the determinant in (15b) is 
equal to n. 

Some difficulty can arise near a caustic. Then the matrix 
to be inverted in (29b) becomes singular. Owing to the par- 
ticularly simple form of the cubic term in the expansion of 
3, a higher order NR can be employed to avoid this 
singularity, but for the cases studied here we were able to 
achieve remarkably good results without this. If the zero 
eigenvalue at the caustic is taken as small, say N 10w6, which 
is still numerically viable in GEB, then the convergence is to 
within the region of error between the actual and discretized 
path for n E 100. However, if the choice of x0, t,, x,, t, 
(with to, t, purely real) puts an end point sufficiently past a 
caustic into a classically unallowed region, the method does 
not converge. Since convergence occurs typically in less 
than 10 to 20 steps for n z 100, if the method does not 
converge after 20 steps, one can assume that the path lies 
sufficiently in a classically unallowed region. 

To obtain the nonclassical paths on the classically 
unallowed side one can trace a path’s evolution around the 
caustic in complex time and back to classically unallowed 
real times. A path’s evolution is traced by varying x0, t,, x,, 
t, slowly (in this case only t,) using y,? from the previous 
path as the initial guess for the next. The procedure then is 
to approach the caustic in real time, add a small imaginary 
time (of either sign), increase (or decrease) the real part of 
the time past the caustic time, and then subtract the 
imaginary time part. As will be illustrated in Section 4, a 
generic caustic involves two classical paths coalescing into 
one. Two nonclassical paths survive past the caustic in com- 
plex yj and real to, t,, and each can be arrived at by tracing 
either coalescing classical path around the caustic in both 
positive and negative imaginary time. These paths are 
related to each other by complex conjugation. 

Related to this is the question of obtaining all the classical 
paths connecting a particular set of end points. Since the 
relaxation method converges on only one path at a time, 
one is not sure of the existence of other paths. The procedure 
to obtain other classical paths is to follow one classical path, 
obtained by the relaxation method starting from an initial 
guess, to a caustic by varying x, or t,. To obtain the second 
classical path coalescing with the first at the caustic, one 
need only trace the first path once completely around the 
caustic in complex time back to classically allowed real 
times. This classical path then evolves into the other classical 
path at the caustic, which can in turn be traced to other 
caustics and the process repeated. In this way, all the paths 
in x0, t,, x,, t, can be mapped out. This point is illustrated 
in Section 4 with the anharmonic potential, where the 
classical paths are not known analytically, and a heuristic 
explanation for why this works is given there. 

Thus far we have all the necessary numerical tools for 
the far-from-caustic WKB form and for the uniform 
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approximation presented in Section 4. We next consider the 
near-caustic form. Once a classical path is found in which 
d, is O(fi’13), i.e., one eigenvalue of S’$: is O(ti1’3) and the 
rest are 0( 1 ), Eq. (14) is becoming a poor approximation 
and one should switch to (26). For this, the nearby caustic 
path must first be found by varying t, until d, is below 
some tolerance. In practice, if the propagator is to be found 
several times, this effort is not wasted because each classical 
path obtained in approaching the caustic path can be used 
in a near-caustic WKB propagator. Once the caustic path is 
found, a diagonalization of ~5’3; can be done by a QL 
algorithm with implicit shifts [ 173. If one deals with 
( -m/AtF) S*sg = tjk + (AtF)’ V~‘~,/rn, rather than S’gg, 
then one is again in the situation where the algorithm deals 
only with numbers of order n. This procedure for obtaining 
the eigenvalues and eigenvectors is an order n3 operation, 
and so it is slower than what is required for the far-from- 
caustic WKB form. However, once these are known, they 
can be used to construct all the near-caustic WKB 
propagators for near-caustic paths with fixed x0, to, x,. The 
quantities u and v depend on the near-caustic path in a 
trivial way and can by obtained by an order 1 operation. 
On a Sun Spare station 1, one thousand paths can be 
obtained in 35 s of cpu time, while diagonalizing c?*$ takes 
14 s for n = 100. 

4. ILLUSTRATIONS OF THE 
RELAXATION ALGORITHM 

In this section, we implement our relaxation algorithm 
for three examples. The intention here is to illustrate the 
algorithm’s ability to deal with Lagrangians of the general 
form (3) in obtaining the action and other quantities 
discussed in Section 2, via the classical path. A complete 
comparison of exact and WKB propagators for the 1/x2 
potential will be presented elsewhere [ 181. 
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The examples considered are: (a) a harmonic potential 
with time varying equilibrium position; (b) a double-well 
anharmonic potential; and (c) the repulsive 1/x2 potential. 
For the last example, the paths and action are known 
analytically as functions of end points, so that a more exten- 
sive check can be made than in the previous examples. 

a. The Time-Dependent Harmonic Potential 

The relaxation algorithm is particularly adept for 
quadratic Lagrangians of the most general form, because 
in this case S’s, is independent of yj and the method con- 
verges in one iteration; hence the algorithm has an obvious 
advantage over shooting methods, which require at least 
three iterations for convergence. 

Quadratic Lagrangians (which include linear potentials 
and free particles as special cases) are unique in that there 
is only one path for a given set of end points, except at a 
caustic, where there are infinitely many paths. The latter 
case corresponds to b-function focusing of the propagator. 
The propagator is given exactly by (14) in all cases. 

We consider the following example, taking 

v,= ik(y,- jj)2, 

J, = dj mWC)lln, 
(30) 

where mod gives the remainder after integer division of j by 
(n/2). This potential represents a harmonic oscillator whose 
equilibrium position moves with constant velocity in the 
positive y direction, but suddenly snaps back to y = 0 half 
way through the time interval, t, - t,. Some examples of 
paths in purely real and purely imaginary time, for n = 100, 
are shown in Figs. la, b. We measure mass, time, and length 
in units of m, (m/k)‘j2, and CJ, respectively. A check that, for 
the relaxation algorithm, the energy remains constant along 
the two legs of the path, i.e., j < n/2, j > n/2, shows that, for 
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FIG. 1. Classical paths for the harmonic potential with time varying equilibrium position. The numbers labeling the paths indicate the time t = t, - I,, 
to travel from y, = 0 to y, = 0, and the curve labeled j is the equilibrium position. 
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FIG. 2. The asymmetric double-well anharmonic potential. 

t = 10, the largest deviation from the average energy is 3.1, 
2.4, 1.0, and 0.5 % for n = 100, 200, 500, and 1000, respec- 
tively. 

b. The Anharmonic Potential 

A more interesting example is the asymmetric double-well 
anharmonic potential, V(x) = C[ (x/0)~/4 + 2(x/0)~/9 - 
(x/cJ)~/~], depicted in Fig. 2. We measure mass, time, and 
length in units of m, o(m/C)“‘, and 0, respectively. Owing 
to the rich structure of the paths, we illustrate only classical 
paths in real time and concentrate on those paths in the well 
bounded by x = -2 and x = 0. For any set of end points, 
there are infinitely many paths, almost all of which are high 
energy paths bouncing many times off the hard x4 walls. 
Such paths contribute little to the sum over classical paths 
in (14), since A, turns out to increase with the number of 
bounces, and large A, suppresses the contribution. We do 
not consider these paths because of their relatively simple 
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structure. A check that, for the relaxation algorithm, the 
energy remained constant along the paths we consider 
shows that the largest deviation from the average energy is 
5.0 % for n = 100 in the worst case; for n > 100 the error in 
the energy is reduced, as in Section a. 

Of greater interest is the existence of several paths for one 
set of end points and their evolution as they are traced up 
to a caustic, varying t = t, - t, or x,. For x0 = x, = - 1 and 
t = 10, eight classical paths exist which remain within the 
bounds x = -2 and x = 0. Figure 3a depicts three of the 
four euen paths at t = 10, 7.76, 6.83. (Even implies that 
the path reflects into itself when the path is reflected about 
its midpoint in time.) We label the most oscillatory path 
number 1, the least oscillatory number 3, and the other 
number 2. The one not shown we label number 4. Figure 3b 
depicts two of the four uneven paths for t = 10, 8.5,7.76. The 
most oscillatory is labeled number 5, the other number 6. 
Paths 7 and 8 can be obtained from 5 and 6 by letting 
j --t n - j (i.e., reflecting about the midpoint in time). 

The best illustration of the advantage of the relaxation 
method over the shooting method can be made in terms of 
these paths. In every case when one is reasonably close to a 
path (in relaxing this means a reasonable initial guess to the 
whole path; in shooting, this means a reasonable initial 
guess to the initial velocity) we find that shooting takes six 
to 20 times more iterations than relaxing. To obtain com- 
parable accuracy for the path and action by the two 
methods, we employ the fourth-order Runge-Kutta integra- 
tion scheme for shooting, where one iteration of this method 
takes twice as much cpu time as one relaxation iteration. 

However, this is not the greatest disadvantage of 
shooting; the greatest disadvantage lies in obtaining a path 
from its initial velocity when the nature of the path is such 
that it is fairly sensitively dependent on initial conditions. (It 
need not be chaotic.) In Figs. 3a and b it is clear that Paths 
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FIG. 3. Paths for the anharmonic potential: (a) Classical paths connecting x0 =x, = - 1 in times t = 10 (solid lines), r = 7.76 (dashed lines), and 

r = 6.83 (dotted lines), for the even paths. Only paths 1,2,3 of the four even paths are shown. (b) Classical paths connecting x0=x, = - 1 in times f = 10 
(solid lines), t = 8.5 (dashed lines), and t = 7.76 (dotted lines), for the uneven paths. Paths 7 and 8 are obtained from 5 and 6, respectively, by letting 
j + n - J.. 
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FIG. 4. The evolution of 3, (dashed lines) for Paths 1, . . . . 8 and d, 
(solid lines) for Paths 1, 2, 4, 5, 7 as x0=x,= - 1 are kept fixed, and 
t = 1, - I, is varied. A path reaches a caustic when d C = 0. 

2, 3, 5, and 6 begin with similar velocities, and these initial 
velocities approach one another more closely as t is made 
larger. For t = 10, the initial velocities are u0 =0.934005, 
0.971747, 0.837013, and 0.971141 for Paths 2, 3, 5, and 6, 
respectively. In order to distinguish Paths 3 and 6, one 
requires accuracy to the fourth digit in u,,. A similar problem 
is seen for Path 3 when one considers keeping time t fixed, 
but the end point X, is varied. When Path 3 connects 
x,=-l to x, = - 1 with t = 10, the initial velocity is 
u0 =0.971747, and when Path 3 connects x0= - 1 to 
x, = - 1.8 with t = 10, the initial velocity is u0 = 0.971657. 
The sensitive dependence on u0 is again apparent, with five- 
figure accuracy in u0 required to distinguish the two paths. 
For Path 3, this accuracy is required for shooting from 
x,, = - 1 to any x, over the range x, = 0 to x, = - 1.9, with 
time t = 10. Although paths may correspond to well-dis- 
tinguished extrema of s”( { y,} ), they may, and often do, have 
very close initial velocities. Since relaxation is based on 
finding these well-separated extrema, it does not suffer from 
having to distinguish paths by initial velocities, as shooting 
does. Thus, in contrast with our relaxation method, the 
shooting method will have difficulties in finding all paths 
connecting two end points. 

We also obtained Paths 1 , . . . . 8 by the Doll et al. [ 111 
simulated annealing method and found that this method 
takes at least lo3 times as much cpu time to obtain a path, 
compared to our relaxation method, when one demands 
comparable accuracy. The stochastic procedure required in 
the method makes it uncompetitive with our method. 
Because Doll et al. do not discuss how to systematically 
obtain all the paths by their method, we found it necessary, 
in order to obtain all eight paths, to start annealing from 
good initial guesses for the paths, guided by the results 
obtained from our method. 

The time evolution of s”, for these eight paths, and the 
evolution of A, for Paths 1, 2, 4, 5, 7, are shown in Fig. 4. 
Path 1 undergoes two caustic coalescences, at t = 7.76 and 
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FIG. 5. The approach of Paths 1 and 4, with x0 =x, = - 1 fixed, to the 
caustic path at t = 6.83 (dotted line). The paths shown are at t = 8.0 (solid 
lines) and t = 7.0 (dashed lines). 

t = 6.83. The caustic coalescence at t = 6.83 involves the 
coalescence of Paths 1 and 4, and beyond this time lies the 
classically unallowed region for these paths. The approach 
of Paths 1 and 4 to the caustic path is shown in Fig. 5. This 
topological coalescence between the stationary action paths 
occurs because in the space of tlj (the space in which ~5~3,: 
is diagonal) a maximum annihilates a minimum along some 
direction, < 1, say, as t is varied. This is schematically shown 
in Fig. 6a and is the caustic condition considered in 
Section 2. However, the caustic coalescence at t = 7.76 is 
topologically different. In this case, three paths, 1, 5, and 7, 
come together and only one path, call it Path 1, survives as 
t is decreased. The same type of caustic coalescence occurs 
involving paths 2, 6, and 8 at t = 3.89 with path 2, say, sur- 
viving. In the space of lj, this caustic occurs because along 
the t1 direction, two minima and a maximum combine as t 
is decreased to form one minimum. This is schematically 
shown in Fig. 6b and is not the caustic situation considered 
in Section 2; that theory is not applicable for this topologi- 
tally different caustic. However, the former case is generic 
whereas the latter is not. In the 3D space of x0, x,, t, the 
caustics form 2D manifolds which can intersect (along 
planes of symmetry) and form 1D lines. The nongeneric 
caustic occurs along these lines. In this example, when 
x,0 = x,, reflecting a path about the midpoint in time leaves 
S, and A, invariant. This symmetry gives rise to the non- 
generic caustic along the line defined by x0 = x, and t = t,, 
where tF is a single-valued function of x0. If x,, # x,, we are 
no longer on this line and the nongeneric caustic does not 
occur. For example, for x0 = - 1 and x, = - 1.2, Path 5 
coalesces with Path 4 at t = 6.51, and Path 7 coalesces with 
Path 1 at t = 8.37. The nongeneric caustic splits into two 
generic caustics. Still higher symmetries can give rise to yet 
other topologically distinct caustics which occur at points 
in x0, x,, t. An example of such a caustic, not considered 
here, occurs when x0 = x, = 0 for a symmetric double-well 
potential. 
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FIG. 6. The (a) generic and (b) nongeneric causting conditions. The frames show the action as a function of the coordinate 5, (see text) along which 
the stationary values coalesce; (A) before, (B) while, and (C) after they coalesce. 

A heuristic understanding of why one classical path 
coalescing at a caustic evolves into the other coalescing 
classical path, when traced around the caustic in complex 
time, can be obtained by considering the generic caustic 
depicted in Fig. 6a. As a function of tl, the action behaves 
as 3 N c: - al1 and hag stationary values at 5, = +@. 
Now the evolution of frames A, B, and C in Fig. 6a 
corresponds to a > 0, a = 0, a < 0, respectively, and a can be 
identified as being proportional to + (t - fF) for 1 t - t,l 
small. The + sign is taken if t > t, is the classically allowed 
region; otherwise, the - sign is taken. Then tracing once 
around the caustic corresponds to a -+uei2K, and hence 
&G-J7 a 3 and vice versa. The classical paths evolve 
into each other, and hence the stationary values of 3 do as 
well. This argument also gives some understanding of the 
Stokes phenomenon and why the classical and nonclassical 
paths contribute as we describe in Section 2. On the classi- 
cally unallowed side, a < 0 and two stationary values exist 
andlieat[,=kim; correspondingly, two nonclassi- 
cal paths exist in complex yj and are related to each other by 
complex conjugation. To obtain the contribution to the 
propagator for these stationary values in the action in the 
limit A + 0, the contour of integration for t, can be 
deformed only into the upper complex 4, plane, and one 
obtains a contribution from just one nonclassical path by a 
Laplace argument on the deformed contour. On the classi- 
cally allowed side, we have a > 0, and the two stationary 
points are on the real axis. The integration over (I then 
yields contributions from both stationary values by a 
stationary phase argument. This argument breaks down 
when a= 0(h213) (the caustic condition), in which case 
taking fi + 0 does not serve to localize the contribution of 
the integrand on the contour to just the neighbourhoods of 
the two stationary phase points in the classically allowed 
case, or to just the neighbourhood of the one stationary 
phase point in the classically unallowed case. 

Paths can also coalesce at caustics by varying x, at fixed 
t,. Figure 7 shows the evolution of S, for all eight paths and 

A, for paths 1, 2, 4, 5, 7 as X, is varied. All the caustics 
depicted are generic. Paths 5 and 7 (also 6 and 8) are not 
related by reflecting about the midpoint in time when 
x,, # x,, and the degeneracy seen in Fig. 4 is removed. 

The maps of SC (or 3,) and A, in Figs. 4 and 7 are 
produced by tracing any one classical path to and around its 
caustics to the other classical paths we consider, i.e., those 
lying in -2 <x < 0. However, these paths also trace to 
other classical paths lying outside the range - 2 < x < 0 
and, in fact, we were not able to find any classical paths 
which did not trace to all the others. It is unclear if it is 
always possible to trace to all other classical paths in x0, x,, 
t from only one. 

c. The lJx2 Potential 

For the repulsive potential V(x) = C/x’, with C > 0, the 
paths, action, and exact propagator are known analytically 
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FIG. 7. The evolution of S, (dashed lines) for Paths 1, . . . . 8 and A, 
(solid lines) for Paths 1, 2,4, 5, 7 as x0 = - 1 and r = 10 are kept fixed and 
X, is varied. Note that, to avoid cluttering the figure, two paths are 
unlabeled, between x = - 1.83 and x = - 1.56. The dc curves for Paths 6 
and 8 are not fully shown. They continue in the direction of the arrows. 
Path 6 connects to 3, and Paths 3 and 8 connect to paths lying outside 
-2<x<o. 
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as functions of x0, x,, and t = t, - to. There are exactly two 
classical or nonclassical paths for all x,,, x,, t, except those 
values corresponding to the caustic, where there is one path 
for each x0, x,, t; this caustic separates the classical and 
nonclassical regions along a ruled surface, with the classical 
region given by x0x, > yt, where y = (2C/m)“‘. For a given 
x0, the caustic is the line, in the (x,, t) space-time plane, 
delined by x, = yt/x,; i.e., this line is the envelope for the 
family of paths emanating from x0 with various initial 
velocities. 

On the classically allowed side, usually one of the two 
paths is direct and the other indirect; i.e., one path (the 
direct one) does not have a turning point between the end 
points, whereas the other path (indirect) has one. For 
conditions where both paths are indirect, e.g., near the 
caustic or when x, = x0, we continue to use the label D for 
the path of lower action, and I for the path of higher action. 
Equivalently, one distinguishes the D and I paths from 
the property that a D path does not touch the caustic 
(envelope) between its end points, whereas an Z path does. 
On the classically unallowed side, paths D and I are the 
analytic continuations of the paths D and Z, respectively, 
from the classically allowed side. 

The action for these paths is 

Sc(x,, x,, t) =; (xi + xt, zk 2(x:x: - y2t2P2) 

* my(sin’(yt/x,x,) - 1** n), (31) 

where the - sign corresponds to the direct path (D) for 
which L = 0, and the + sign corresponds to the indirect 
path (I) for which 2, = 1. For the value of sin-‘, one takes 
the principal angle. In analytically continuing to the classi- 
cally unallowed side, one again takes principal values of the 
square root and sin - ’ in (3 1). The exact propagator is [2] 

.exp[im’x~~x~‘]Z”(~), (32) 

where I, is the modified Bessel function of index 
v=i(l+8mC/h ) . ’ ‘j2 We measure mass, time, and length in 
units of m, a2(m/C)‘/2, and 0, respectively, where (r is an 
arbitrary length scale. A check that, for the relaxation 
algorithm, the energy remains constant along the paths we 
consider, shows that n = 100 is sufficiently large to give good 
results. 

For n = 100, there is remarkably good agreement between 
the exact and discretized quantities. With the exceptions dis- 
cussed below, the discretized paths, S, and A, are within 
0.1% of the exact values. Figure 8 depicts both paths, D and 
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FIG. 8. Paths for the 1/x2 potential; Paths I (solid lines for the real 
part, light dotted lines for the imaginary) and Paths D (dashed lines for the 
real part, heavy dotted lines for the imaginary) connecting x0 = 3 to xn = 4 
intimest=5+Oi,3+4i,andO+5i.Fort=S+OiandO+5i,PathDis 
purely real, while Path I is purely real only for t = 5 + Oi. 

Z, for x0 = 3, x, = 4, and t = 5 + Oi, 3 + 4i, 0 + 5i. Path Z for 
t = 0 + 5i is interesting, since it runs into the singularity of 
the potential in finite imaginary time (as it does for any pure 
imaginary time). The algorithm makes its largest error when 
the path is deepest within the potential, with maximum 
relative error in the path - 100% atj = 30,57; however, the 
absolute error is small and S, and A, are still within 0.1% 
of the exact values. A similar error occurs for path Z for real 
times when t + 0 and the path runs deep within the poten- 
tial, but S, and A, remain quite accurate. 

For the paths connecting x0 = 3 and x, = 4 in real classi- 
cally allowed and unallowed times, S, and A, are plotted in 
Fig. 9. Beyond t, = 8.485, S, for both paths is complex, and 
the two values are related to each other by complex con- 
jugation, while A, is purely positive or nagative imaginary. 
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FIG. 9. The evolution of SC (dashed lines for real part, light dotted 
lines for imaginary) and A, (solid lines for both real and imaginary parts) 
for Paths D and I as x,, = 3 and X, = 4 are kept fixed, and t is varied. For 
f < t,, A, is purely real, and for t > I,, it is purely imaginary. The arrow 
indicates t, = 8.485. 
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FIG. 10. The exact (dashed line), far-from-caustic WKB (solid line), and near-caustic WKB (dotted line) propagators, for propagating from x,, = 3 
to x, = 4 in real times 0 < t < 15, for (a) fi = 1 and (b) fi = 0.258. The arrow indicates tF = 8.485. 

Path Z has action with Im(S,) < 0 and leads to an exponen- 
tially growing solution as t + co. It is not included in Cc 
in (14). 

In Fig. 10 we compare the exact, far-from-caustic, and 
near-caustic WKB propagators for A = 1 and 0.258, i.e., 
v=$and~,forx0=3,x,=4,andrealtimesO<t<15.The 
WKB propagators are calculated using the paths obtained 
from the relaxation method. The agreement between the 
exact and far-from-caustic WKB propagators is remarkably 
good for times away from the caustic time tF= 8.485, even 
for the very nonclassical value of #i = 1. (In our units fi = 1 
is very nonclassical.) The near-caustic WKB propagator is 
also in good agreement with the exact value at t = t,, but is 
poor over much of the caustic region for A = 1; the agree- 
ment improves for A = 0.258. For still smaller fi, this agree- 
ment improves further, and both the far-from-caustic and 
near-caustic WKB propagators match at the limits of the 
caustic region with increasing accuracy. 
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FIG. 11. The exact (dashed line) and uniform WKB (solid line) 
propagators, for propagating from x0 = 3 to x, = 4 in real times 0 < t < 15 
for h = 1. The arrow indicates tr= 8.485. 

In cases where neither the near-caustic nor far-from- 
caustic form is accurate (e.g., the region 4 < t < 5 for h = 1; 
see Fig. lOa), the uniform approximation (see discussion 
below) gives a satisfactory result. In Fig. 11, the exact result 
and uniform approximation are compared for fi = 1. The 
agreement is seen to be quite satisfactory for all t. For 
smaller fi, the agreement is even better. Outside the caustic 
region, both the far-from-caustic and uniform approxima- 
tion give about the same agreement with the exact result; 
but, near the caustic, the near-caustic form gives a substan- 
tially better result than the uniform approximation on the 
classically allowed side, is equal to the uniform result at the 
caustic, and is slightly worse than the uniform result on 
the classically unallowed side. Hence the near-caustic form 
is useful if greater accuracy is desired on the classically 
allowed side of the caustic; the price paid is the greater effort 
required in calculating the quantities which go into its form. 

The uniform asymptotic approximation [2] for 
K(x,, x,, t) is given by (14), but with a correction factor A c 
inserted in the summand. For the generic case of two paths 
connecting each pair of end points and which coalesce at the 
caustic, A, is given by [18, 19) A.=Ai”‘(-q), where 
(- ) corresponds to C = D (direct path), ( + ) corresponds 
to C = Z (indirect path), and 

Ai”‘( -q)= 7c”2[q1’4Ai( -q) + iqp”4Ai’( -q)] 

xelp( Ti(~q3’2-f))~ (33) 

where A’(x) = (d/dx) A(x), and q is defined by 

iq3’2 = (S, - S,)/h. (34) 

Note that S, - SD = 3, - 3,) since (see the argument of the 
exponential of Eq. (14)) S, differs from 3, by the same 
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amount as S, differs from 3,. The factor AC behaves as 
A, -+ 1 far from the caustic on the classically allowed side, 
and A, + 0 with finite product A, A 2 I” near the caustic. 
On the classically unallowed side, Ai’ + ) suppresses the 
exponentially growing term, discarded in CC in (14), as dis- 
cussed earlier; the growing term must be retained when the 
correction factor Ac is inserted. It is important to choose 
the phase of q correctly in (34). On the classically allowed 
side, q is to be taken as positive real, and on the unallowed 
side it is to be taken as negative real. The principal root in 
4 ‘14 is to be taken in (33) in all cases. 
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